Cholesky Decomposition Rectification for Non-negative Matrix Factorization

نویسنده

  • Tetsuya Yoshida
چکیده

We propose a method based on Cholesky decomposition for Non-negative Matrix Factorization (NMF). NMF enables to learn local representation due to its non-negative constraint. However, when utilizing NMF as a representation leaning method, the issues due to the non-orthogonality of the learned representation has not been dealt with. Since NMF learns both feature vectors and data vectors in the feature space, the proposed method 1) estimates the metric in the feature space based on the learned feature vectors, 2) applies Cholesky decomposition on the metric and identifies the upper triangular matrix, 3) and utilizes the upper triangular matrix as a linear mapping for the data vectors. The proposed approach is evaluated over several real world datasets. The results indicate that it is effective and improves performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing Dimensionality in Text Mining using Conjugate Gradients and Hybrid Cholesky Decomposition

Generally, data mining in larger datasets consists of certain limitations in identifying the relevant datasets for the given queries. The limitations include: lack of interaction in the required objective space, inability to handle the data sets or discrete variables in datasets, especially in the presence of missing variables and inability to classify the records as per the given query, and fi...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

Implementing a parallel matrix factorization library on the cell broadband engine

Matrix factorization (or often called decomposition) is a frequently used kernel in a large number of applications ranging from linear solvers to data clustering and machine learning. The central contribution of this paper is a thorough performance study of four popular matrix factorization techniques, namely, LU, Cholesky, QR, and SVD on the STI Cell broadband engine. The paper explores algori...

متن کامل

Parallel Incomplete-LU and Cholesky Factorization in the Preconditioned Iterative Methods on the GPU

A novel algorithm for computing the incomplete-LU and Cholesky factorization with 0 fill-in on a graphics processing unit (GPU) is proposed. It implements the incomplete factorization of the given matrix in two phases. First, the symbolic analysis phase builds a dependency graph based on the matrix sparsity pattern and groups the independent rows into levels. Second, the numerical factorization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011